Assessment of the Rock Elasticity Modulus Using Four Hybrid RF Models: A Combination of Data-Driven and Soft Techniques

نویسندگان

چکیده

The determination of the rock elasticity modulus (EM) is an indispensable key step for design engineering problems. Traditional experimental analysis can accurately measure EM, but it requires manpower and material resources, time consuming. EM estimation new rocks using former published empirical formulas also a possibility be attached high uncertainties. In this paper, four types metaheuristic optimization algorithms (MOA), named backtracking search algorithm (BSA), multi-verse optimizer (MVO), golden eagle (GEO) poor rich (PRO), were utilized to optimize random forest (RF) model predicting EM. A data-driven technology was used generate integrated database consisting 120 samples from literature. To verify predictive performance proposed models, five common machine-learning models one formula developed predict Four popular indices, including root-mean-square error (RMSE), mean absolute (MAE), coefficient (R2) Willmott’s index (WI), adopted evaluate all models. results showed that PRO-RF has obtained most satisfactory prediction accuracy. porosity (Pn) important variable based on sensitive analysis. This paper compares RF optimized by MOA prediction. It provides good example subsequent application soft techniques other parameter estimations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

the impact of training on second language writing assessment: a case of raters’ biasedness

چکیده هدف اول این تحقیق بررسی تأثیر آموزش مصحح بر آموزش گیرندگان براساس پایایی نمره های آنها در پنج بخش شامل محتوا ، سازمان ، لغت ، زبان و مکانیک بود. هدف دوم این بود که بدانیم آیا تفاوتهای بین آموزشی گیرندگان زن و مرد در پایایی نمرات آنها وجود دارد. برای بررسی این موارد ، ما 90 دانشجو در سطح میانه (متوسط) که از طریق تست تعیین سطح شده بودند انتخاب شدند. بعد از آنها خواستیم که درباره دو موضوع ا...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2023

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app13042373